ÄÁÅÙÃ÷»ó¼¼º¸±â

MATLABȰ¿ë ÁÖ±âÀûÀÎ Àΰ£¿îµ¿ÀÇ ¿îµ¿ÇÐ ¿¬±¸
MATLABȰ¿ë ÁÖ±âÀûÀÎ Àΰ£¿îµ¿ÀÇ ¿îµ¿ÇÐ ¿¬±¸
  • ÀúÀÚManfred M. Vieten
  • ÃâÆÇ»ç¾ÆÁø
  • ÃâÆÇÀÏ2021-05-03
  • µî·ÏÀÏ2021-06-10
º¸À¯ 2, ´ëÃâ 0, ¿¹¾à 0, ´©Àû´ëÃâ 1, ´©Àû¿¹¾à 0

Ã¥¼Ò°³


ÀÌ ³í¹®¿¡¼­´Â ¼øÈ¯ À̵¿À» ¼³¸íÇϴ µÎ °¡Áö À¯ÇüÀÇ ¸ðµ¨, Áï À̷аú µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨À» ¾ð±ÞÇϰí ÀÖ´Ù. À̷РÁ߽ɠ¸ðµ¨¿¡´Â ÇغÎÇÐÀû ¹× »ý¸®ÇÐÀû Ãø¸éÀÌ Æ÷ÇԵȴÙ. À̵éÀº ÁַΠÀ̵¿ Æ¯¼º¿¡ ´ëÇÑ ÀÌÀ¯¿¡ ´ëÇÑ Áú¹®¿¡ ´äº¯Çϴ µ¥ ÀûÇÕÇÏÁö¸¸, º¹ÀâÇÏ°í »ó´çÇÑ ´Ü¼øÈ­·Î ÀÎÇØ ÀϹÝÀûÀ¸·Î À¯È¿ÇÑ °á°ú°¡ Çã¿ëµÇÁö ¾Ê´Â´Ù. µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨Àº Æ¯Á¤ Áú¹®¿¡ ´ë´äÇÒ ¼ö ÀÖÁö¸¸ ÀϹÝÀûÀΠ¿òÁ÷ÀӠƯ¼º¿¡ ´ëÇÑ ÀÌÇØ°¡ ºÎÁ·ÇÏ´Ù. ÀÌ ³í¹®À» ÅëÇØ ¿ì¸®´Â Å¸ÇùÀ» ½ÃµµÇÒ Çʿ䠾øÀÌ ÇØºÎÇÐ, ½Å°æÇÐ, ±ÙÀ° ±â´É¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ¿ì¸®´Â ¿òÁ÷ÀÓÀ» »ý¼ºÇϴ °úÁ¤À» ÁöÁ¤ÇÒ Çʿ䠾øÀÌ ÁÖ±âÀû Àΰ£ ¿îµ¿¿¡ ´ëÇÑ ÀϹÝÀûÀΠ¿îµ¿ÇÐÀû ¼³¸íÀÌ °¡´ÉÇÏ´Ù°í °¡Á¤Çϰí, ¿îµ¿ÇÐÀ» Á¦´ë·Î ÀÌÇØ ÇÒ·Á°í ³ë·ÂÇÑ´Ù. Á¦¾ÈµÈ ¸ðµ¨Àº ¼ýÀÚ¿Í ¹«ÀÛÀ§ ±â¿©µµ¸¦ Æ¯¼ºÈ­Çϴ µ¿¾È ÇÇ»çüÀÇ ¸Å·ÂÀÚ, ¸ðÇÎ, ÂªÀº ½Ã°£ º¯µ¿, °úµµ È¿°ú, Á¦¾î ¸ÞÄ¿´ÏÁò ¹× ¼¾¼­ ³ëÀÌÁî µî 6°³ ±â¿©µµÀÇ ÁßøÀ¸·Î ±¸¼ºµÈ´Ù. ¿ì¸®´Â ·¯´× ¸Ó½Å ·¯´×°ú Á¤ÁöµÈ ÀÚÀü°ÅÀÇ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¸ðµ¨À» Å×½ºÆ®ÇÑ´Ù.
¸ðÇüÀ» ½Ã¹Ä·¹À̼ǿ¡ Àû¿ëÇϸé ÃøÁ¤µÈ µ¥ÀÌÅͿ͠½Ã¹Ä·¹À̼Ǡ°ªÀÌ Àß ÀÏÄ¡ÇÕ´Ï´Ù. ¿ì¸®´Â ¸ðµç °æ¿ì¿¡ ÃøÁ¤°ú ½Ã¹Ä·¹À̼Ǡ»çÀÌÀÇ À¯»ç¼º ºÐ¼®ÀÌ µ¿ÀÏÇÑ °ú¸ñ¿¡ ´ëÇØ °¡Àå ÁÁ´Ù´Â °ÍÀ» ¹ß°ßÇß´Ù.·± 55% ¹× ¹ÙÀÌÅ© 64%. ´Ù¸¥ °ú¸ñµé »çÀÌÀÇ ¸ðµç ºñ±³´Â ·± 51% > ¹ÙÀÌÅ© 52% ÀÌ´Ù. À̴ °ü·ÃµÈ ½Ã¹Ä·¹À̼ǿ¡ ´ëÇÑ °¢ ÃøÁ¤ÀÇ ½Äº°À» À§ÇØ °íÀ¯ÇϰԠÀü´ÞµÈ´Ù. ±×·¯³ª ´Ù¸¥ ½ÇÇè ºñ±³¿¡¼­µµ ¥ârun = 6.7¡¾4.7% ¿Í ¥âbike = 5.1¡¾4.5%ÀÇ Â÷ÀÌÀÇ ÃøÁ¤ °á°ú¿Í ½Ã¹Ä·¹À̼Ǡ°á°ú °£¿¡ Àß ÀÏÄ¡ÇÑ´Ù.

ÀúÀÚ¼Ò°³


ÀúÀÚ : Manfred M. Vieten

  

¸ñÂ÷

Á¦ 1Æí : MATLAB ±âº»Æí
1. MATLAB ±âº»»ç¿ëÆí ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 003
1.1 MATLAB ½ÃÀÛÇϱ⠡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 003 
¸í·Éâ(command Window)¿¡¼­ÀÇ ÀԷ 005
µµ¿ò¸»(Help)ÀÇ À̿렡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 007
1.2 ÀԷ ¿À·ùÀÇ ¼öÁ¤ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 008 
°è»êÀÇ ÁßÁö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 009 
MATLAB Á¾·áÇϱ⠡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 009
1.3 ¿¬»ê°ú º¯¼öÀÇ ÇÒ´ç ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 009 
¿¬»êÀÚ ¿ì¼±¼øÀ§ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 011
³»ÀåÇÔ¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 012
1.4 µ¥ÀÌÅÍÀǠǥÇö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 013
1.5 º¯¼öÀǠ󸮠¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 015 
º¯¼ö À̸§ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 015
clear ¸í·É¾î ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 016
Ư¼öº¯¼ö¿Í Á¤¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 017
whos ¸í·É¾î ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 017
1.6 º¤ÅͿ͠Çà·Ä ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 018 
º¤ÅÍ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 018
Çà·Ä ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 023
½ºÅ©¸° Ãâ·Â°ú ¾ïÁ¦ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 024
1.7 ·£´ý(Random)¼ö¿Í º¹¼Ò¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 025 
·£´ý ¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 025
º¹¼Ò¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 027
1.8 ±âÈ£¸¦ ÀÌ¿ëÇÑ ¿¬»ê ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 028 
±âÈ£½Ä¿¡¼­ÀǠġȯ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 029
1.9 ÄÚµå ÆÄÀÏ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 030 
½ºÅ©¸³Æ® ÄÚµå ÆÄÀÏ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 030
ÄÚ¸àÆ®ÀÇ Ãß°¡ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 032
ÇÔ¼ö ÄÚµå ÆÄÀÏ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 033
»ç¿ëÀÚ Á¤ÀÇÇÔ¼ö ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 036
1.10 °£´ÜÇÑ ±×·¡ÇÁÀÇ »ý¼º ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 037 
ezplotÀ» ÀÌ¿ëÇÑ ±×·¡ÇÁ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 037
plotÀ» ÀÌ¿ëÇÑ ±×·¡ÇÁ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 039
3Â÷¿ø ±×·¡ÇÁ ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 042
1.11 MATLAB°ú ¿¢¼¿(Excel)ÀÇ Á¢¼Ó 043 
¿¢¼¿ µ¥ÀÌÅÍ ºÒ·¯¿À±â ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 043
µ¥ÀÌÅÍ °¡Á®¿À±â ¿É¼Ç ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 046
½ºÅ©¸³Æ® »ý¼º ¿É¼Ç ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 049
ÇÔ¼ö »ý¼º ¿É¼Ç ¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ 049
»ý¼ºµÈ µ¥ÀÌÅ͸¦ ¿¢¼¿ÆÄÀϷΠÀúÀåÇϱ⠡¤¡¤ 050

Á¦ 2Æí : ¿¬±¸³í¹®
The kinematics of cyclic human movement

1. Introduction 51
2. Method 53
3. Data handling 57
4. Separating the transient effect from morphing 58
5. Simulation 59
6. Discussion 62
7. References 67