컨텐츠상세보기

기계는 어떻게 생각하는가?
기계는 어떻게 생각하는가?
  • 저자숀 게리시
  • 출판사이지스퍼블리싱
  • 출판일2019-12-27
  • 등록일2020-08-07
보유 2, 대출 1, 예약 0, 누적대출 8, 누적예약 0

책소개



“자율 주행차는 어떻게 작동하는 걸까?” “알파고는 이세돌을 어떻게 이겼을까?”

개발자, CTO는 물론 중·고등학생에 이르기까지 4차 산업 혁명을 이끌 모든 사람을 위한 필독서!



“자율 주행차는 어떻게 작동하는 걸까?” “알파고는 이세돌을 어떻게 이겼을까?”

개발자, CTO는 물론 중·고등학생에 이르기까지 4차 산업 혁명을 이끌 모든 사람을 위한 필독서!



미래는 벌써 우리 곁에 다가와 있다. 자율 주행차가 도로를 달리고, 알고리즘이 내가 좋아하는 영화와 TV 프로그램을 추천해 주며, IBM 왓슨은 TV 퀴즈 쇼 〈제퍼디!〉에서 우승을 거두었고, 알파고는 이세돌을 꺾었다. 심지어 아타리 게임을 하는 방법을 스스로 학습하는 컴퓨터 프로그램도 등장했다. 

구글 엔지니어링 팀 수석 리더인 숀 게리시는 컴퓨터 프로그램을 똑똑하게 만든 인공 지능과 기계 학습 분야에서 어떤 것을 발견하고 문제를 어떻게 해결해 나갔는지 비전공자도 이해할 수 있는 언어로 쉽게 설명해 준다. 또한 최근 인공 지능 개발 분야의 내부에서 무슨 일이 일어나고 있었는지 관련 연구자들의 성과와 기계들이 생각하는 방식을 흥미롭게 소개한다. 우리에게 잘 알려진 자율 주행차와 알파고의 실체가 궁금한 모든 분께 좋은 안내서가 될 것이다. 이 책을 통해 베일 속에 감춰진 인공 지능의 중요한 아이디어를 만날 수 있다.

저자소개



저자 : 숀 게리시

저자 : 숀 게리시

숀 게리시는 프린스턴 대학에서 기계 학습 분야로 박사 학위를 받았고 2019년 현재 구글(Google)에서 기계 학습의 최전선에서 분투 중인 소프트웨어 엔지니어이다. 그도 처음부터 전문가는 아니었다. 처음에는 기계 학습을 이해하느라 여러번 논문을 찾고 검색을 반복했다. 인공 지능 분야에 입문하는 사람들이 이런 어려움을 겪지 않도록 하고 싶다는 생각에 그동안 ‘나한테 있었으면 좋겠다’고 생각한 것을 모아 이 책을 집필했다. 구글의 기계 학습 및 데이터 사이언스 팀을 거쳐 테자 테크놀로지(Teza Technologies)에서 엔지니어로 근무하다 현재 구글 파이(Fi) 팀의 기술 리더로 일하고 있다.



역자 : 이수겸

9살에 첫 컴퓨터를 갖고 코딩을 시작한 이래로 늘 긱(geek)의 삶을 살았다. 최근 인공 지능 분야에도 관심을 가지게 되었다. 인천대 컴퓨터공학과를 졸업했고, Microsoft MVP로 활동한 풀스택 엔지니어. 현재는 실리콘밸리의 유망 스타트업 중 하나인 로블록스(Roblox)에서 일하고 있다.





목차

마이크로소프트 CTO 추천사

머리말 

한국어판 서문

국내 전문가 추천사



시작하기 - 생각하는 기계의 기원을 찾아서



01 자동인형의 비밀

플루트를 연주하는 자동인형 | 오늘날의 오토마타 | 진자 운동과 오토마타 | 이 책에서 다룰 오토마타 | 인공 지능과 기계 학습은 무엇인가? 



첫째마당 자율 주행차와 인공 지능



02 자율 주행차의 시작 - DARPA 그랜드 챌린지

100만 달러가 걸린 사막의 무인 자동차 경주 대회 | 초기 자율 주행차는 어떻게 만들었을까? | 주행 경로 계획하기 | 험비의 계획 - 낮은 비용, 최단 경로를 찾아라! | 자율 주행차는 어떻게 달릴 수 있을까? | 험비의 고난에 찬 주행기 | DARPA 그랜드 챌린지는 과연 실패한 걸까? 



03 자율 주행차는 차선을 어떻게 인지할까?

두 번째 DARPA 대회 - 그랜드 챌린지 | 자율 주행차에 적용한 기계 학습 | 자율 주행차 스탠리의 구조 | 장애물을 피하는 알고리즘 | 도로의 경계를 찾는 모듈 | 도로를 인식하는 방법 | 속도 조절을 위한 경로 계획 | 스탠리의 두뇌 각 부분은 서로 어떻게 소통할까?



04 자율 주행차는 교차로에서 어떻게 양보할까?

세 번째 DARPA 대회 - 어번 챌린지 | 인지의 추상화 | 한 차원 높아진 자율 주행차 경주 대회 | 보스를 생각하는 차로 만든 모노폴리 판 모듈 | 오류 회복 시스템으로 교통량 정보 얻기 | 3 레이어 구조 | 자율 주행차의 객체 분류 | 자율 주행차는 복잡한 시스템이다 | 자율 주행차는 앞으로 어떻게 발전할까? 



둘째마당 넷플릭스 프라이즈와 인공 지능



05 넷플릭스 프라이즈 - 영화 추천 알고리즘 대회

100만 달러가 걸린 영화 추천 알고리즘 대회| 경쟁자들 | 분류기의 훈련 | 대회의 목표 | 거대한 평점 행렬 | 행렬 인수 분해 | 다가오는 첫해의 결말 



06 협력하는 참가자들 - 넷플릭스 프라이즈의 우승자

참가자들의 격차가 좁혀지다 | 첫 번째 대회의 결과 | 시간에 따른 평점 예측 | 과적합 여부 판단하기 | 모델 블렌딩은 하나의 해결책 | 넷플릭스 프라이즈의 두 번째 해 | 넷플릭스 프라이즈의 마지막 해 | 대회 이후 넷플릭스가 얻은 것  



셋째마당 강화 학습과 심층 신경망



07 보상을 통한 컴퓨터의 학습 - 강화 학습

딥 마인드, 아타리 게임을 하다 | 강화 학습 | 에이전트에게 명령하기 | 에이전트 프로그래밍하기 | 에이전트가 보는 세계 | 컴퓨터는 어떻게 경험을 저장할까? | 강화 학습으로 아타리 게임하기 



08 신경망으로 아타리 게임을 정복하다

신경 정보 처리 시스템 | 완벽에 가깝게 | 수학 함수로서의 신경망 | 아타리 게임 에이전트 신경망의 구조 | 신경망에 더 깊게 들어가기 



09 인공 신경망이 보는 세상

인공 지능에 대한 미신 | 체스 두는 오토마타 ― 터키인 | 신경망에 대한 오해 | 이미지에서 객체 인지하기 | 과적합 문제와 해결책 | 이미지넷 대회 | 합성곱 신경망 | 왜 심층 신경망인가? | 데이터 병목 



10 심층 신경망의 내부 구조

컴퓨터가 생성한 이미지 | 스쿼싱 함수 | ReLU 활성화 함수 | 인조 인간의 꿈 



넷째마당 세상과 소통하는 인공 지능



11 듣고 말하고 기억하는 신경망

기계가 ‘이해’한다는 것의 의미 | 음성 인식 심층 신경망 | 순환 신경망(RNN) | 이미지 설명글 생성기 | LSTM 유닛 | 적대적 데이터



12 자연어, 그리고 〈제퍼디!〉 문제의 이해

왓슨의 개발은 인공 지능 연구에 독인가, 득인가? | IBM 왓슨 | 왓슨, 〈제퍼디!〉에 도전하다 | 사실에 대한 긴 목록 | 〈제퍼디!〉 챌린지의 탄생 | DeepQA | 문제 분석 | 왓슨의 문장 해석 방법 



13 〈제퍼디!〉의 답 마이닝하기

최저 기준 | 후보 생성 단계 | 답을 찾아서 | 가벼운 필터 | 증거 수집 단계 | 점수 계산 단계 | 집계와 순위 결정 | 왓슨 최적화하기 | DeepQA 다시 살펴보기 | 왓슨에게 지성이 있을까? 



다섯째마당 게임과 인공 지능



14 무차별 탐색으로 좋은 전략 찾기

게임에서 이기는 수 탐색 | 스도쿠 | 트리의 크기 | 분기 계수 | 게임의 불확실성 | 클로드 섀넌 | 평가 함수 | 딥 블루 | IBM에 합류하다 | 탐색 그리고 신경망 | TD-GAMMON | 탐색의 한계 



15 알파고는 어떻게 완성되었나?

컴퓨터 바둑 | 바둑의 규칙 | 직관을 길러주는 바둑 기보 | 신의 한 수 | 몬테카를로 트리 탐색 | 슬롯머신과 멀티암드 밴딧 | 알파고, 이렇게 복잡할 필요가 있었을까? | 알파고의 한계 



16 실시간 인공 지능과 스타크래프트 봇

봇 만들기 | 스타크래프트와 인공 지능 | 게임 단순화하기 | 실용적인 스타크래프트 봇 | Open AI와 도타2 게임 | 스타크래프트 봇의 미래 



끝내기 기계는 지능을 가질 수 있을까?



17 50년 후, 또는 그 후

적기를 맞은 인공 지능